Catalytic Reaction Rates from First Principles Simulations: Accelerating the Search for Better Catalytic Materials

Jason M. Bray, Chao Wu, David Schmidt, William F. Schneider
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN

Heterogeneous Catalysis

Catalysis is vital to the chemical industry as well as sustainable energy conversion, storage, and use.

Catalyst: substance that increases the rate of a process without itself being consumed by the process.

Heterogeneous catalyst: reactants and catalyst in different phases.

Adsorption

Adsorption energies are not additive due to adsorbate-adsorbate interactions.

 clustered expansion fit to DFT

 where

\[E(r_i) = J_i \sum_{j} \sigma_{ij} + \sum_{j,k} \sigma_{ijk} + \sum_{j,k,l} \sigma_{jkl} + \cdots \]

Cluster expansion calculates energies more than 1000x faster than DFT.

Large-scale Simulations

Monte Carlo simulations provide:
1. Statistical averaging of millions of surface configurations.
2. Effect of temperature and pressure.

Surface Heterogeneity

Site distributions are a manifestation of adsorbate-adsorbate interactions.

Rate Predictions

NO Oxidation

Rate-limiting dissociative adsorption of \(\text{O}_2 \) over catalytic Pt surface.

\[
\text{RDS: } 2\text{NO}(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)
\]

Temperature Programmed Desorption

Associative desorption of \(\text{O}_2 \) from O-covered Pt surface.

Conclusions

Basis site model predictions agree with experimental results.

References